Learning from feedback training data at a self-paced brain-computer interface.
نویسندگان
چکیده
Inherent changes that appear in brain signals when transferring from calibration to feedback sessions are a challenging but critical issue in brain-computer interface (BCI) applications. While previous studies have mostly focused on the adaptation of classifiers, in this paper we study the feasibility and the importance of the adaptation of feature extraction in a self-paced BCI paradigm. First, we conduct calibration and feedback training on able-bodied naïve subjects using a new self-paced motor imagery BCI including the idle state. The online results suggest that the feature space constructed from calibration data may become ineffective during feedback sessions. Hence, we propose a new supervised method that learns from a feedback session to construct a more appropriate feature space, on the basis of the maximum mutual information principle between feedback signal, target signal and EEG. Specifically, we formulate the learning objective as maximizing a kernel-based mutual information estimate with respect to the spatial-spectral filtering parameters. We then derive a gradient-based optimization algorithm for the learning task. An experimental study is conducted using offline simulation. The results show that the proposed method is able to construct effective feature spaces to capture the discriminative information in feedback training data and, consequently, the prediction error can be significantly reduced using the new features.
منابع مشابه
The Berlin Brain-computer Interface for Rapid Response
The Berlin Brain-Computer Interface (BBCI) project is guided by the idea to train a computer using advanced machine learning and signal processing techniques in order to improve classification performance and to reduce the need of subject training. Instead of having the human adapt to a predefined feedback that is computed from a fixed set of features, the BBCI adapts to the user’s brain waves ...
متن کاملA self-paced motor imagery based brain-computer interface for robotic wheelchair control.
This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order ...
متن کاملA Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment
Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired vol...
متن کاملSelf-paced brain-computer interface control of ambulation in a virtual reality environment
OBJECTIVE Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the...
متن کاملAdaptive Methods Exploiting the Time Structure in EEG for Self-paced Brain-Computer Interfaces
Although self-paced Brain-Computer Interface (BCI) is desirable from the users’ point of view, it brings about great technological challenges. This thesis aims to provide novel solutions to several important aspects in developing a realistic self-paced Electroencephalogram (EEG) based BCI. A Sequential Floating Forward Search (SFFS) based method is developed for feature selection, followed by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2011